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ABSTRACT
Alternative splicing of the mRNA encoding the N-methyl-D-aspartate (NMDA) receptor

subunit NR1 changes the structural, physiologic, and pharmacologic properties of the
resultant NMDA receptors. We used dual label immunocytochemistry and confocal micros-
copy to localize the four alternatively spliced segments of the NR1 subunit (N1, C1, C2, and
C28) in rat striatal neurons. Striatofugal projection neurons and four populations of
interneurons were studied. Projection neurons, which were identified by immunolabeling for
calbindin and by retrograde tracing from the globus pallidus and the substantia nigra, were
the only striatal neurons containing C1 segment immunoreactivity. Projection neurons were
also C2 segment immunopositive, as were all other neuronal populations studied. Projection
neurons were C28 segment immunonegative. In contrast, each of the interneuron types were
labeled by the antibody to the C28 segment: nitric oxide synthase interneurons were labeled
intensely, calretinin and parvalbumin neurons were labeled moderately strongly, and
cholinergic neurons were also labeled but less strongly than the other types of interneurons.
Parvalbumin interneurons showed distinct N1 segment immunolabeling, which was not
found in other types of striatal neurons. Our results suggest that all striatal neurons studied
synthesize NR1 subunit proteins, but the isoforms of the protein present in projection neurons
and the several types of interneurons are distinct. This differential expression of NR1 isoforms
may affect both neuronal function and selective vulnerability of neurons to injury. J. Comp.
Neurol. 415:204–217, 1999. r 1999 Wiley-Liss, Inc.
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The striatum is the primary target of afferent input to
the basal ganglia (Albin et al., 1989; Graybiel, 1990;
Parent and Hazrati, 1995). Medium-sized spiny neurons,
which project to the pallidum, to the entopeduncular
nucleus, and to the substantia nigra, constitute about 90%
of the striatal neurons (Gerfen, 1992). In addition, there
are several types of striatal interneurons present, with
distinct morphologic and physiologic properties. Four of
the populations of interneurons can be identified histo-
chemically by the presence of (1) choline acetyltransferase
(ChAT), (2) parvalbumin, (3) calretinin, and (4) neuronal
nitric oxide synthase (nNOS; for review, see Kawaguchi et
al., 1995). Projection neurons and, to a lesser extent,
interneurons receive dense glutamatergic afferents from
the neocortex (Divac et al., 1977; Kim et al., 1977; McGeer

et al., 1977), the thalamus (Dubé et al., 1988), and the
subthalamic nucleus (Kita and Kitai, 1987). Their excita-
tory input activates ionotropic N-methyl-D-aspartate
(NMDA), a-amino-3-hydroxy-5-methyl-4-isoxazole-propio-
nate, and kainate receptors and metabotropic glutamate
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receptors (Tallaksen-Greene and Albin, 1994; Bernard et
al., 1997; Götz et al., 1997; Bernard and Bolam, 1998;
Testa et al., 1998).

NMDA receptor subunit messenger RNAs and proteins
are abundant in the striatum (Petralia et al., 1994; Stan-
daert et al., 1994; Kosinski et al., 1998), where the
receptors serve a variety of functions. Striatal NMDA
receptors are involved in the regulation of g-aminobutyric
acid (GABA), neuropeptide, and acetylcholine release
(Damsma et al., 1991; Ruzicka and Jhamandas, 1991;
Young and Bradford, 1991; Bustos et al., 1992; Galli et al.,
1992; Somers and Beckstead, 1992; Morari et al., 1993;
Young and Bradford, 1993), and their activation stimu-
lates the expression of the immediate-early genes c-fos and
c-jun (Xia et al., 1996; Berretta et al., 1997). NMDA
activation causes striatal neurons to dephosphorylate and
thereby to inactivate the protein phosphatase inhibitor
DARRP-32 (Halpain et al., 1990), an important regulator
of dopaminergic neurotransmission (Fienberg et al., 1998),
whose activity may be necessary for the potentiation of
NMDA receptors by protein kinase A (Blank et al., 1997).
NMDA receptors participate in the regulation of striatal
synaptic plasticity, through processes such as long-term
potentiation of synaptic strength (Calabresi et al., 1992;
Walsh and Dunia, 1993; Garcia-Munoz et al., 1996). Stria-
tal lesioning with the NMDA agonist quinolinic acid
mimics Huntington’s disease (Beal et al., 1986, 1991;
DiFiglia, 1990; Roberts et al., 1993; Figueredo-Cardenas et
al., 1994), a hereditary neurodegenerative disorder that
primarily affects striatal projection neurons and spares
interneurons (Ferrante et al., 1987a,b; Reiner et al., 1988;
Harrington and Kowall, 1991; Albin et al., 1992; Augood et
al., 1996).

The NMDA receptor is thought to be a tetra- or pentamer
(discussed in Dingledine et al., 1999) composed of subunit
proteins from the NR1 (Moriyoshi et al., 1991) and NR2
families (Monyer et al., 1992). NR1 subunit proteins are
abundantly expressed in all brain areas, and one NR1
subunit must be present for receptor function, at least in
vitro. Expression of the four NMDAR2 receptor subunit
proteins, NR2A–D, is regulated regionally and developmen-
tally (Monyer et al., 1994; Sheng et al., 1994), and their
presence or absence modulates physiologic and pharmaco-
logic properties of the NMDA receptor complex (reviewed
in Dingledine et al., 1999).

The mRNA encoding the NR1 subunit contains three
alternatively spliced regions. The resulting NR1 subunit
isoforms differ by the presence or absence of a segment in
the amino-terminal region, termed N1, and by the expres-
sion or omission of the two independent protein segments,
C1 and C2, at the carboxy-terminus of the protein. Omis-
sion of the region encoding C2 removes a stop codon and
results in a new open reading frame, encoding the alterna-
tive carboxy-terminus C28 (Fig. 1; Anantharam et al.,
1992; Sugihara et al., 1992; Hollmann et al., 1993; Zukin
and Bennett, 1995). NMDA receptors that contain differ-
ent isoforms of NR1 differ in their affinity for glutamate,
glycine, and NMDA (Durand et al., 1992). Alternative
splicing of NR1 influences modulation of the receptor
channel by polyamines (Durand et al., 1992; Traynelis et
al., 1995), protons (Traynelis et al., 1995), divalent cations
(Hollmann et al., 1993; Traynelis et al., 1998), Ca21/
calmodulin (Ehlers et al., 1996; Hisatsune et al., 1997),
and phosphorylation by protein kinases A and C (Durand
et al., 1992; Tingley et al., 1993, 1997; Leonard and Hell,

1997; Grant et al., 1998; Logan et al., 1999). There is also
evidence for a regulatory role of alternative splicing of NR1
in the subcellular localization of NMDA receptors (Ehlers
et al., 1995), and splice segment-specific interactions have
been reported with the cytoskeleton-associated protein
yotiao (Lin et al., 1998) and the neurofilament subunit
NF-L (Ehlers et al., 1998).

Previous studies employing in situ hybridization have
demonstrated the differential expression of the mRNAs
encoding NR1 isoforms among different types of striatal
neurons (Landwehrmeyer et al., 1995; Laurie et al., 1995).
In an previous immunohistochemical study, we found that
the striatal interneurons expressing nNOS contain an
NR1 protein isoform distinct from those isoforms found in
the majority of striatal cells (Weiss et al., 1998). In the
present study, we have identified the NR1 protein isoforms
present in projection neurons and several additional classes
of interneurons in the striatum.

MATERIALS AND METHODS

Antibodies and antisera

All of the immunochemical reagents for the identifica-
tion of alternatively spliced NMDAR1 segments employed
in this study have been described previously in published
studies (Table 1). Two affinity-purified antibodies, desig-
nated 22282 (for the N1 segment of NMDAR1) and 17182
(C1 segment of NMDAR1), were obtained from Dr. Morgan
Sheng (Neurobiology Department and Howard Hughes

Fig. 1. Schematic of the eight possible NR1 receptor proteins
generated by alternative splicing of N-methyl-D-aspartate receptor
subunit R1 messenger RNA. Extracellular N- and intracellular C-
terminals (Tingley et al., 1993) of the isoforms of NR1 are represented.
The binary nomenclature (000–111) indicates the presence or absence
of the three alternatively spliced segments N1, C1, and C2 (Zukin and
Bennett, 1995). The membrane-spanning, conserved region of the
protein is not illustrated. N1, which is a cassette of 21 amino acids
located at the amino-terminus of the protein, is encoded by exon 5. Two
independent consecutive splice cassettes encode the C1 and C2
segments of the protein, containing 37 and 38 amino acids, respec-
tively. Excision of the segment encoding C2, which contains the stop
codon, and splicing to an alternative downstream acceptor site result
in the translation of 22 unrelated amino acids (C28) before a second
stop codon is reached (Hollmann et al., 1993).
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Medical Institute, Massachusetts General Hospital). These
antibodies were produced by using peptide immunogens in
rabbits and characterized by immunoblots and the ability
to coimmunoprecipitate other NMDA subunits (Sheng et
al., 1994). Use of the C1 segment antibody in previous
immunohistochemical investigations has been reported
(Liu et al., 1994; Johnson et al., 1996; Weiss et al., 1998).
The antiserum to the C2 segment was obtained from Drs.
Ted and Valina Dawson (Neurology and Neuroscience
Department, Johns Hopkins University). It has been char-
acterized by immunoblot analysis in brain extracts and
transfected cells (Aoki et al., 1994) and used in several
previous immunohistochemical studies (Aoki et al., 1994,
1997; Aoki, 1997; Weiss et al., 1998; Albers et al., 1999).
When the C2 cassette of the NMDAR1 mRNA is absent,
alteration of the reading frame produces a novel carboxy-
terminal sequence (the ‘‘C28 segment,’’ Fig. 1; Huang et al.,
1993; Iadarola et al., 1996). We used an antibody raised to
a peptide and characterized both by Western blot and
immunohistochemical techniques to localize this protein
segment (Iadarola et al., 1996; Weiss et al., 1998; Albers et
al., 1999). For neurochemical identification of striatal
neurons, we used antibodies against calbindin (Sigma
Chemicals, St. Louis, MO; diluted 1:100), parvalbumin
(Sigma; diluted 1:1,000), calretinin (Chemicon Interna-
tional, Temecula, CA; diluted 1:2,000), ChAT (Chemicon;
diluted 1:100), and nNOS. The nNOS antibody (JH8GP,
diluted 1:1,000) was raised in guinea pig against a
C-terminal peptide (amino acids 1413–1429) of rat nNOS
and affinity purified. This antibody has been characterized
in immunoblots of brain extracts and used in prior studies
for immunohistochemical localization of nNOS (Huang et
al., 1993 ; Aoki et al., 1997; Weiss et al., 1998).

Biotinylated dextran (BD) labeling

Retrograde tracing was conducted by using a modifica-
tion of the methods of Rajakumar (1993) and Tallaksen-
Greene (1994). Male Sprague-Dawley rats (250–300 g)
were anesthetized with pentobarbital (100 mg/kg, i.p.) and
placed in a stereotaxic frame. Biotinylated dextran (molecu-
lar weight 5 10 kDA; Molecular Probes Inc., Eugene, OR),
freshly dissolved in double distilled water (5%), was pres-
sure injected (2 µl; 1 µl/minute) with a syringe (30 gauge;
Hamilton Co., Reno, NV) into the substantia nigra (n 5 4)
and globus pallidus (n 5 4) by using coordinates taken
from the atlas of Paxinos and Watson (1986). For the
substantia nigra, coordinates were: AP 24.4, ML 12.0, DV
28.0 from bregma. For globus pallidus, the needle was
tilted 16° medially to avoid penetrating the striatum and
coordinates were: AP 20.8, ML 10.9, DV 26.5 from
bregma. Animals were allowed to survive for 10–12 days.

Tissue processing

In all studies, the animals were deeply anesthetized
with pentobarbital (100 mg/kg, i.p.) and perfused with
normal saline followed by 4% paraformaldehyde in 0.1 M
sodium phosphate buffer, pH 7.4, containing 0.9% NaCl
(PBS), at room temperature (RT). The brains were re-
moved immediately, postfixed for 1 hour in the same
fixative at RT, and then cryoprotected overnight in 30%
sucrose at 4°C. The brains were then frozen in isopentane
cooled with dry ice, and 50-µm coronal sections were cut
with a freezing microtome. The sections were then either
processed immediately for immunohistochemistry or stored
in 50% glycerol in 100 mM Tris, pH 7.5, at 220°C. All
animal-related procedures were performed in strict accor-
dance with the National Institutes of Health Guidelines
for the Care and Use of Laboratory Animals and were
approved by the Massachusetts General Hospital Subcom-
mittee on Research Animal Care.

Immunohistochemistry

Dual-label immunohistochemistry was conducted as de-
scribed previously (Standaert et al., 1986; Testa et al.,
1998). BD-injected brains were processed for single-label
immunohistochemistry. In all studies, the sections were
washed in PBS and then incubated in 3% normal goat
serum or 3% normal donkey serum with 0.3% Triton X-100
in PBS for 1 hour. For dual-label immunohistochemistry,
sections were incubated over two nights at RT (for C28
segment antibodies) or 4°C (all others) in the same solu-
tion containing combinations of primary antibodies di-
luted as listed in Table 1 with antibodies against calbindin,
parvalbumin, calretinin, ChAT, or nNOS. Sections were
then washed in PBS and incubated sequentially in fluores-
cent secondary antibodies. Antibodies to NMDA subunits
were visualized by using goat anti-rabbit or donkey anti-
rabbit antiserum coupled to Cy3 (Jackson Laboratories,
West Grove, PA; diluted 1:200). Neuronal calbindin, parv-
albumin, and ChAT staining was visualized with goat
anti-mouse serum coupled to Cy2 (Jackson Laboratories;
diluted 1:800). Calretinin staining was visualized with
donkey anti-goat antiserum labeled with fluorescein
isothiocyanate (FITC; Jackson Laboratories; diluted 1:50).
Neuronal NOS staining was visualized with goat anti-
guinea pig antiserum labeled with FITC (Jackson Labora-
tories; diluted 1:50). Sections for combined retrograde
tracing and immunohistochemistry were incubated over
two nights with primary antibodies, as listed in Table 1.
NMDA subunit receptor antibodies were detected by using
goat anti-rabbit antiserum coupled to Cy3 (1:200; Jackson
Laboratories), followed by incubation in FITC-labeled
avidin (1:500; Jackson Laboratories) for 1 hour to visualize
biotin-labeled neurons. All sections were then washed in
PBS, mounted on gelatin-coated slides, dried, and cover-
slipped using glycerol containing 100 mM Tris, pH 8.0, and
0.2% p-phenylenediamine (Sigma) to retard fading. Each
experiment included control tissue, processed with omis-
sion of one or both primary antibodies.

Preparations were examined using a Bio-Rad Laser
Confocal system (MRC 1024, Richmond, CA) equipped
with a Leica DMRB microscope and an argon/krypton
laser. Images were obtained by illuminating the section
with a single laser line and collecting the image by using
an appropriate emission filter: for Cy3, excitation at 568
nm and a 605-nm longpass filter; for FITC, excitation at

TABLE 1. Antibodies Used for Immunohistochemical Localization
of NMDA Receptor Subunit Proteins*

Specificity Identifier Antigen Amino acids Dilution Reference

NMDAR1-N1 22282 Peptide 1–21 of exon 5 0.5 µg/ml Sheng et al. (1994)
NMDAR1-C1 17182 Peptide 864–900 0.5 µg/ml Sheng et al. (1994)
NMDAR1-C2 Peptide 923–938 1:500 Aoki et al. (1994)
NMDAR1-C28 D2 Ab Peptide 1–17 of C28 1:800 Iadarola et al.

(1996)

*Listed are the specificity, identifying name or number, type of antigen, and working
dilution for the N-methyl-D-aspartate (NMDA) receptor subunit protein antibodies used
in this study. All antibodies were raised in rabbits. The references listed describe the
production of these antibodies in more detail.
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488 nm and a 522 nm bandpass filter. For each wave-
length, four sequential images 1,024 3 1,024 pixels in size
with an 8-bit pixel depth were obtained and averaged by
using a Kalman filtering method to reduce noise. Images
were assembled for display and contrast adjusted in Adobe
Photoshop. No further image processing was performed.

Double-labeled neurons were counted manually with a
Leica DMRB microscope equipped with N2 and I2 filter
sets, in two coronal sections of two different rat brains per
double-label combination. Cells were counted in the left
and right striata in three dorsoventral columns located in
the medial, central, and lateral striata. The intensity of
NR segment immunoreactivity within each cell was graded
in four categories, as described by Kosinski et al. (1997): 0,
immunonegative: area occupied by the cell was unstained,
e.g. Figure 2B2 and 2B5 (arrows); 1, low: a small number
of puncta was visible throughout the cytoplasm of the cell,
e.g., Figure 3G (arrow); 11, moderate: small clusters of
staining were arrayed along the margins of the cell, e.g.,
Figure 2A2 (cells not indicated by arrows or arrowheads);
and 111, intense: clusters of staining formed a continu-
ous ring around the cell, e.g., Figure 2A2 and 2A5 (arrows).

RESULTS

Striatum displays distinct patterns of
NMDAR1 receptor isoform immunoreactivity

The antibodies targeted to segments encoded by alterna-
tively spliced regions of the NMDAR1 mRNA each pro-
duced distinct patterns of immunoreactivity in rat stria-
tum. Only a few NMDAR1-N1-immunopositive neurons
were detected, and these displayed staining of the cyto-
plasm and membrane of the soma and proximal dendrites
(Fig. 3). The antiserum against the N1 segment also
labeled numerous small puncta in the neuropil, and occa-
sionally there were linear aggregations of immunoreactiv-
ity resembling beads on a string. NMDAR1-C1-immu-
nopositive neurons were abundant and displayed intense
membrane and moderate cytoplasmic staining (Figs. 2A,
4). Immunoreactivity for C1 was stronger in the medial
and ventral regions of the striatum. The antiserum against
the C1 segment produced moderate staining in the neuro-
pil. The vast majority of neurons present in the striatum
displayed moderate C2 segment immunoreactivity. This
antiserum also produced low intensity staining of small
puncta in the striatal neuropil (Fig. 6). The NMDAR1-C28
antiserum labeled a small number of cells, most of which
exhibited strong staining (Fig. 7), whereas the neuropil
remained largely unstained. In the absence of primary
antisera, no staining was detectable within cells or in the
neuropil, and the staining patterns were not altered by
coincubation with the neuronal marker antibodies.

Identification of neostriatal neurons

The antiserum against calbindin D28K stained a large
number of striatal neurons and striatal neuropil in a
patchy distribution (Fig. 2A). Previous studies have demon-
strated that the calbindin-poor regions correspond to the
striatal striosomal compartment, whereas the intensely
stained regions correspond to the matrix compartment
(Gerfen et al., 1985; Graybiel, 1990; Gerfen, 1992). The
antisera against striatal interneurons, targeted to parval-

bumin, calretinin, ChAT, and nNOS, each stained a mod-
est number of striatal cells consistent with the low abun-
dance of interneurons in the striatum (Kawaguchi et al.,
1995). Parvalbumin cells were often slightly larger than
those labeled by calbindin and were polygonal, oval, or
fusiform in shape, as previously described (Cowan et al.,
1990; Kita et al., 1990; Fig. 2B). ChAT-immunopositive cell
soma were large, and the staining was found throughout
the cytoplasm, as previously described (Bolam et al., 1984;
Figs. 3C, 4C, 6C, 7C). The antibody to calretinin stained a
modest number of small striatal neurons, consistent with
previous descriptions (Bennett and Bolam, 1992; Figs. 3D,
4D, 6D, 7D). The antibody to nNOS labeled cell bodies and
extensive neuronal arborization, as reported in a previous
study (Weiss et al., 1998; data not shown). Injections of BD
into the substantia nigra pars reticulata (SNr) and in the
globus pallidus (GP) resulted in retrograde labeling of
numerous medium-sized striatal neurons and their den-
dritic processes in the ipsilateral striatum (Fig. 5A,B).

Localization of NMDAR-N1 immunoreactivity
in identified striatal neurons

Calbindin-immunolabeled striatal projection neurons
(Fig. 3) and those identified by retrograde tracing from the
SNr and GP (data not shown) displayed only a very low
level of N1 segment immunoreactivity, similar to that
present in the neuropil. Calretinin-, ChAT- and nNOS-
immunopositive neurons likewise contained very low lev-
els of N1 segment immunoreactivity. Two-thirds (31/45,
Table 2) of the parvalbumin neurons, however, displayed
moderately strong staining for the N1 segment of NM-
DAR1 (Fig. 3).

Localization of NMDAR-C1 immunoreactivity
in identified striatal neurons

Calbindin neurons exhibited strong staining with the
antibody to the NMDAR1-C1 segment. Of 55 consecutive
calbindin-positive cells examined, 30 displayed moderate
and 22 intense immunoreactivity for the C1 segment (Figs.
2A, 4), whereas only three had no detectable C1 staining
(Table 2). In addition, there was a modest number of
medium-sized neurons labeled by the C1 antibody that did
not stain for calbindin (Fig. 2A); most of these neurons
were found in the calbindin-poor striosomal regions. All of
the striatofugal neurons detected by injection of retro-
grade label in the SNr and most of those detected by
injection in the GP were C1 segment immunopositive (Fig.
5). None of the other populations of striatal neurons
examined displayed C1 segment immunoreactivity (Fig. 4,
Table 2).

Localization of NMDAR-C2 immunoreactivity
in identified striatal neurons

All neuronal populations of the striatum, including
projection and interneurons, displayed C2 segment immu-
noreactivity (Fig. 6). Although most striatal neurons con-
tained moderate amounts of immunoreactivity, the major-
ity of nNOS-immunopositive neurons (35 of 53) exhibited
low immunolabeling (Table 2).
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208 K.D. KÜPPENBENDER ET AL.



Localization of NMDAR-C28
immunoreactivity in identified

striatal neurons

Immunoreactivity for the C28 segment was virtually ab-
sent from calbindin-immunoreactive neurons (Fig. 7, Table 2)
and retrogradely labeled striatofugal projection neurons
(data not shown). Conversely, the majority of the striatal
interneurons contained C28 segment immunoreactivity.
The most intense staining was found over nNOS-positive
neurons, as described previously (Weiss et al., 1998). Parvalbu-
min- and calretinin-immunoreactive neurons both displayed
moderate C28 segment labeling, whereas ChAT-immuno-
positive neurons showed low or no C28 staining (Fig. 7).

DISCUSSION

By using antibodies selective for the three alternatively
spliced segments of the NMDAR1 receptor protein, we
examined the localization of NMDAR1 receptor isoforms in
rat striatal neurons. Projection neurons were identified by
staining for calbindin D28K and by retrograde tracing from
the targets, the GP and SNr. We found that these projec-
tion neurons are characterized by intense staining for the
C1 segment, a property that distinguishes them from each
of the several types of interneurons examined. Interneu-
rons containing the calcium-binding proteins parvalbumin
or calretinin and those expressing nNOS exhibit a differ-
ent pattern of staining for the NMDAR1 isoforms: they do
not stain for the C1 region but do stain intensely for the
alternative C28 terminus of NMDAR1. Cholinergic inter-
neurons, identified by the presence of ChAT immunostain-
ing, also lack staining for the C1 segment but differ from
the other interneuron types in that they are only weakly
immunoreactive for the C28 segment.

Technical considerations

The antibodies to NMDAR1 used in our study were
directed to peptide or fusion protein epitopes from dis-
crete regions of the NMDAR1 subunit protein. They were
targeted to the alternatively spliced segments of the
NMDAR1 subunit and produced regional patterns of stain-
ing that are consistent with the known distribution of mRNAs
encoding these segments (Laurie and Seeburg, 1994b;
Standaert et al., 1994; Landwehrmeyer et al., 1995). Each
of the antibodies stained neuronal membranes, cytoplasm,
and the neuropil in a fine, granular pattern, whereas the
nuclei remained unstained. These findings are consistent

Fig. 3. Localization of N-methyl-D-aspartate receptor subunit R1
isoforms that contain the N1 segment in identified striatal neurons.
A–D: Images show cells immunopositive for calbindin, parvalbumin,
choline acetyltransferase (ChAT), and calretinin. C: ChAT cells are
larger than all other cells. D: The calretinin cell displays a long,

immunoreactive process. E–H: Images show N1 segment immunoreac-
tivity of the same areas. The pattern of staining is punctuate and
relatively low in intensity. Arrowheads indicate N1-immunopositive
cells, which colocalize with parvalbumin (B,F) but not with calbindin,
ChAT, or calretinin cells (arrows). Scale bar 5 20 µm.

Fig. 2. Localization of NR1-C1 splice segment immunoreactivity in
striatal neurons stained for calbindin and parvalbumin. A1 and A4
illustrate staining for calbindin in striatal neurons and neuropil.
Unstained areas represent tracts of white matter fibers. A2 and A5
illustrate C1 immunoreactivity in the same cells, whereas A3 and A6
are superimpositions of these images. Many but not all calbindin
neurons were double labeled. The intensities of C1 immunoreactivity
differed. The arrows point to intensely (111) C1-immunoreactive
cells. The closed arrowheads indicate calbindin-negative cells, which
were also C1 immunonegative. The open arrowhead indicates a
calbindin-negative cell that displayed C1 segment staining. B1 and B4
illustrate the less prevalent parvalbumin-immunopositive cells, dem-
onstrating labeling of cell body and processes. B2 and B5 illustrate C1
segment immunoreactivity, and B3 and B6 are superimpositions of
these images. Arrows point to parvalbumin cells and indicate the
absence of C1 immunoreactivity over these cells. Scale bars 5 50 µm in
A3,B3 also apply to A1,A2,B1,B2; 20 µm in A6,B6 also apply to
A4,A5,B4,B5.
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with ultrastructural studies that have demonstrated clus-
ters of NMDAR1 immunoreactivity both at sites of synap-
tic contact and within the cytoplasm of somata and den-
drites (Aoki et al., 1994; Huntley et al., 1994; Petralia et
al., 1994; Siegel et al., 1994; Farb et al., 1995; Gracy and
Pickel, 1995; Johnson et al., 1996; Bernard and Bolam,
1998). The antibody to the C2 region displayed prominent
immunoreactivity in the neuropil, as previously described
by others using the same (Weiss et al., 1998) or a different
(Petralia et al., 1994; Farb et al., 1995) antibody to the C2
region. It is important to note that the antisera distinguish
epitopes associated with different regions of the NMDAR1
protein, but it is not possible to determine with these
anatomical methods whether these epitopes are associated
with intact, full-length NMDAR1 transcripts.

The immunochemical markers that we used to detect
striatal interneurons reproduced the known morphology
and patterns of distribution (Armstrong et al., 1983;
Vincent and Johansson, 1983; Bolam et al., 1984; Cowan et
al., 1990; Kita et al., 1990; Dawson et al., 1991; Jacobowitz
and Winsky, 1991; Bennett and Bolam, 1992; Kawaguchi
et al., 1995; Weiss et al., 1998). Previous studies have
examined the overlap between these markers and other
neurotransmitters known to be expressed by striatal neu-
rons. The neurons that contain parvalbumin, calretinin,
and nNOS are GABAergic, and most of them contain the
67-kD form of glutamic acid decarboxylase (Cowan et al.,
1990; Kubota et al., 1993; Lenz et al., 1994). Neuronal
NOS interneurons, which can be identified histologically
by the presence of nicotinamide adenine dinucleotide
phosphate (NADPH-) diaphorase activity (Dawson et al.,
1991), also contain somatostatin and neuropeptide Y (Vin-
cent and Johansson, 1983; Rushlow et al., 1995). Some but

not all nNOS interneurons also stain for calbindin D28K
(Bennett and Bolam, 1993).

Colocalization of the NMDAR1 epitopes with the neuro-
nal markers was examined by using confocal microscopy
with parameters that allowed for very thin optical sections
(approximately 1 µm), thereby largely avoiding the con-
founding influence of overlying structures. With this
method, we were able to clearly visualize staining for the
NMDAR1 epitopes within the perikarya of labeled neu-
rons. Nevertheless, the spatial resolution of this optical
method was not sufficient to determine the localization of
the immunoreactivity found in the neuropil or accurately
determine the relation of this neuropil staining to the
processes of striatal neurons. Thus, our analysis is neces-
sarily limited to the NMDAR1 proteins associated with the
soma, and we cannot exclude the possibility that some
epitopes may be largely absent from this compartment yet
still present within the peripheral processes of the cells.

NR1-C1 segment is confined to striatal
projection neurons

Calbindin D28K, a calcium-binding protein, is enriched in
the matrix compartment of the striatum. It is contained in
medium-sized spiny projection neurons (Gerfen et al.,
1985; DiFiglia et al., 1989) and in a small population of
aspiny neurons recognized as a subset of NADPH-
diaphorase/nNOS interneurons (Kiyama et al., 1990; Ben-
nett and Bolam, 1993). We found that the vast majority of
calbindin-D28K-positive neurons displayed strong C1 seg-
ment immunoreactivity. Because calbindin staining is not
found in projection neurons within the striatal striosomes
and does not distinguish between striatopallidal and stria-
tonigral cells, we also employed retrograde tracing to

Fig. 4. Localization of the C1 segment of N-methyl-D-aspartate
receptor subunit R1 in identified striatal neurons. A–D: Images show
cells immunopositive for calbindin, parvalbumin, choline acetyltrans-
ferase (ChAT), and calretinin. E–H: Images show C1 segment immuno-
reactivity in the same areas. A,E: Arrowheads indicate calbindin-

immunopositive neurons, most of them displaying moderate or intense
C1 staining. Arrows indicate all other cells that appear as areas of
diminished immunoreactivity compared with the surrounding neuro-
pil. Scale bar 5 20 µm.
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identify projection neurons. With this approach, we found
that neurons retrogradely labeled from either the GP or
the SNr both displayed intense C1 immunoreactivity.
These findings suggest that striatal neurons projecting to
the SNr and those projecting to the GP both contain the C1
segment. It should be noted, however, that most of the
axons of striatal neurons projecting to the SNr pass through
the GP, where in rat up to 40% of striatonigral axons give off
minor collaterals to the GP (Loopuijt and van der Kooy, 1985).
Becauseweusedpressure injectionof the tracer, somestriatoni-
gral neurons may have been labeled by uptake into fibers of
passage by pallidal injections and some striatopallidal neu-
rons may have been labeled as a result of uptake from their
nigral collaterals. These potential issues do not alter the
conclusion that C1 staining is associated exclusively with
projection neurons, but they do suggest caution in comparing
the relative extent of labeling seen with the pallidal and nigral
injections. The selective localization of the C1 segment in
projection neurons is consistent with results from a previous
study employing in situ hybridization, in which the mRNA
encoding the C1 segment was detected in striatal enkephalin-
ergic projection neurons but not in interneurons (Landwehrm-
eyer et al., 1995).

TABLE 2. Intensity of NR1 Splice Segment Immunolabeling
of Identified Striatal Neurons*

NR1 segment
immunostaining

Cell count

Calbindin Parvalbumin Calretinin ChAT nNOS

N1
0 0 0 0 0 0
1 50 14 46 63 49
11 0 31 0 0 2
111 0 0 0 0 0

C1
0 3 42 51 58 51
1 0 0 8 0 0
11 30 0 0 0 0
111 22 0 0 0 0

C2
0 0 0 0 0 0
1 0 0 0 0 35
11 50 50 50 50 18
111 0 0 0 0 0

C28
0 55 0 0 23 0
1 0 0 8 31 0
11 0 33 89 0 5
111 1 43 9 0 91

*The intensities of NR1 segment immunolabeling in striatal neurons identified by the
neurochemical markers calbindin, parvalbumin, choline acetyltransferase (ChAT), and
neuronal nitric oxide synthase (nNOS) were graded in four categories: 0, immunonega-
tive; 1, low; 11, moderate; 111, intense. The figures indicate neurons counted in
coronal sections from two different rat brains.

Fig. 5. Localization of C1 segment immunoreactivity in striatoni-
gral and striatopallidal projection neurons. The upper row shows
striatonigral (A) and striatopallidal (B) projection neurons identified
by retrograde tracing. The lower row shows C1 segment immunoreac-

tivity in the same areas (C,D). Arrowheads indicate projection neu-
rons. Neurons in both striatofugal populations display C1 segment
immunoreactivity. Scale bar 5 50 µm.
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The C1 segment contains residues that are targets for
phosphorylation, and it is important for the regulation of
subcellular localization of NMDAreceptor complexes. Bind-

ing of Ca21/calmodulin to a site within the C1 segment
reduces the channel open rate (Ehlers et al., 1996), and
this binding is inhibited by protein kinase C–dependent

Fig. 6. Localization of the C2 segment of N-methyl-D-aspartate
receptor subunit R1 in identified striatal neurons. A–D: Images show
cells immunopositive for calbindin, parvalbumin, choline acetyltrans-
ferase (ChAT), and calretinin. E–H: Images show C2 segment immuno-

reactivity in the same cells. All cells display moderate C2 staining.
Arrows indicate parvalbumin, ChAT, and calretinin cells. Scale bar 5
20 µm.

Fig. 7. Localization of the C28 segment of N-methyl-D-aspartate
receptor subunit R1 in identified striatal neurons. A–D: Images show
cells immunopositive for calbindin, parvalbumin, choline acetyltrans-
ferase (ChAT), and calretinin. E–H: Images show C28 segment immu-
noreactivity in the same areas. Calbindin cells display no C28 immuno-

reactivity, whereas calretinin, parvalbumin, and ChAT cells exhibit
C28 staining (arrows). The arrowheads indicate C28-immunopositive
cells that are not labeled by calbindin, parvalbumin, ChAT, or calreti-
nin, respectively. There is very little labeling of the surrounding
neuropil. Scale bar 5 20 µm.
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phosphorylation of the C1 segment (Tingley et al., 1993;
Hisatsune et al., 1997; Leonard and Hell, 1997; Chakravar-
thy et al., 1999). The C1 segment also contains a phosphor-
ylation site specific for protein kinase A (Tingley et al.,
1997), and activation of protein kinase A enhances the
current response of the NMDA receptor in Xenopus oocytes
injected with rat striatal poly(A1) mRNA (Blank et al.,
1997). NR1 isoforms that contain the C1 segment form
membrane-associated clusters in transfected fibroblasts,
whereas other NR1 isoforms are distributed throughout
cytoplasm of the cells. Phosphorylation of a serine residue
within the C1 segment by protein kinase C rapidly and
reversibly disperses the clusters into the cytoplasm (Ehlers
et al., 1995; Tingley et al., 1997). These effects may result
from interaction of the C1 segment with the cytoskeletal
proteins, including yotiao (Lin et al., 1998) and the neuro-
filament subunit NF-L (Ehlers et al., 1998).

The alternative NR1 carboxy-terminal C28
is confined to striatal interneurons

The alternative splicing of the 38 region of the NMDAR1
mRNA results in a receptor subunit terminating in one of
two alternative endings, termed C2 and C28. By using an
antibody to the C2 segment, we have found that this
epitope is present in all the types of striatal cells examined
and is also fairly abundant in the striatal neuropil. In
contrast, the C28 segment is selectively accumulated by
some but not all striatal interneurons. In particular, nNOS
neurons are stained intensely for the C28 segment, and
these cells show lower immunoreactivity for the C2 seg-
ment. Interneurons containing the calcium-binding pro-
teins parvalbumin and calretinin also exhibit strong stain-
ing for the C28 segment. Interestingly, cholinergic
interneurons contain only low levels of immunoreactivity
for the C28 epitope.

The functional role of the C2 and C28 segments are
incompletely defined, but one potentially important action
is to regulate the cellular localization of the receptor
assemblies. The C28 segment contains a sequence for
anchoring to the postsynaptic density protein 95 (Kornau
et al., 1995). Whereas NR1 isoforms containing the C2
terminus are found in an unassembled, monomeric form in
mouse brain, those with the alternative C28 terminus are
clustered with other subunits (Chazot and Stephenson,
1997). In a recent study employing immunoprecipitation,
the C2 and C28 segments were precipitated together from
homogenized rat forebrain, suggesting that single receptor
assemblies may contain NR1 subunits with each of the two
termini (Blahos and Wenthold, 1996).

The NR1-N1 segment is confined
to parvalbumin interneurons

Cellular labeling for the N1 segment in the striatum was
very rare and confined to a heteromorphic subgroup of
neurons comprising about two-thirds of the parvalbumin
interneurons. The striatal neuropil displayed moderately
dense N1 segment immunoreactivity. In a previous study
using a different antibody to the N1 region together with
tissue pretreatment with hydrogen peroxide and sodium
hydroxide, Nash et al. (1997) detected striatal N1 segment
labeling in unidentified medium-sized round and some
scattered large neurons. These could in part correspond to
the N1 segment immunopositive parvalbumin interneu-
rons we observed. However, our findings indicate that the
largest population of medium-sized striatal neurons, i.e.,

the medium spiny projection neurons, do not contain NR1
isoforms with the N1 segment. This conclusion is consis-
tent with the known distribution of exon 5 mRNA. When
using in situ hybridization, only very low levels of the
mRNA for this segment are found in the rat striatum
(Standaert et al., 1994; Laurie et al., 1995), and a dual
label in situ hybridization study by Landwehrmeyer et al.
(1995) detected no significant expression of the exon 5
insert in striatal enkephalin containing projection neu-
rons, cholinergic, or somatostatin/nNOS interneurons.

The N1 segment appears to have an important effect on
the agonist binding properties of NMDA channels. Pres-
ence of the N1 segment reduces the current response of the
NMDA receptor to glutamate, glycine, and NMDA (Du-
rand et al., 1992; Hollmann et al., 1993) and inhibits the
potentiation by polyamines (Durand et al., 1992; Traynelis
et al., 1995) and by micromolar concentration of Zn21

(Hollmann et al., 1993; Traynelis et al., 1998). Presence of
the N1 segment also potentiates the receptor through
relief from proton inhibition (Traynelis et al., 1995).

NMDAR1 isoforms in striatal neurons

Our data lead us to the conclusion that projection
neurons and interneurons contain different NR1 isoforms.
The antibodies we employed recognize epitopes within the
alternatively spliced regions. Thus, determining the iso-
forms present requires assuming that the segments are in
fact present within intact NMDAR1 subunits. Projection
neurons appear to lack the N1 segment and the alternative
C28 carboxy-terminus. Although virtually all projection
neurons displayed C1 segment immunoreactivity, these
neurons may also contain NR1 isoforms without the C1
segments. Thus the predominant NR1 isoforms in projec-
tion neurons would be NR1011 and possibly NR1001 (Fig. 8),
using the terminology of Zukin and Bennett (1995; Fig. 1).

Parvalbumin-, calretinin-, and nNOS-containing inter-
neurons appear to lack the C1 segment but contain both
types of carboxy-termini, i.e., the C2 and the C28 segments.
A subgroup of parvalbumin interneurons appears to con-
tain NR1 isoforms with an N1 segment. Therefore, the
predominant NR1 isoforms of calretinin/GABAergic and
somatostatin/nNOS interneurons would be NR1000 and
NR1001 (Fig. 8). In addition, parvalbumin interneurons
may contain the isoforms NR1100 and NR1101. Cholinergic
interneurons appear to contain C2 segments but very little
C28 segment immunoreactivity. They also lack N1 and C1
segments and therefore most likely contain predominantly
the NR1001 isoform (Fig. 8).

Consequences for selective vulnerability

Calbindin-D28K-immunoreactive neurons selectively de-
generate in Huntington’s disease (Seto-Ohshima et al.,
1988; Kiyama et al., 1990), whereas interneurons are
spared. Striatal injection of the NMDA-agonist quinolinic
acid imitates this pattern of neuronal cell death in rats,
suggesting a role for the NMDA receptor in the pathogen-
esis of Huntington’s disease (Beal et al., 1986, 1991;
DiFiglia, 1990; Roberts et al., 1993; Figueredo-Cardenas et
al., 1994). Because all known populations of striatal neu-
rons contain NMDA receptors (Chen et al., 1996; Küppen-
bender et al., 1997; Standaert et al., 1999), differences in
the subunit composition among distinct neuronal popula-
tions may play a role in the selective vulnerability of
striatal cells to injury or disease processes. The exclusive
localization of the C1 segment to calbindin-D28K-immuno-
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reactive projection neurons may have an important influ-
ence on the vulnerability of these cells, perhaps because of
presence of the regulatory phosphorylation sites in this
region or the role of the C1 segment in targeting NMDAR1
to synaptic sites. The C1 segment may also participate in
dopamine-mediated regulation of NMDA receptor function
(Cepeda et al., 1993; Snyder et al., 1998), and dopamine D1
receptor activation enhances the neurotoxic effect of NMDA
on medium-sized striatal neurons (Cepeda et al., 1998). In
vivo, NR1 isoforms combine with NR2A–D subunits to
form receptors with distinct functional properties (Buller
et al., 1994; Laurie and Seeburg, 1994a; Gallagher et al.,
1997; Williams, 1997; Calabresi et al., 1998; Krupp et al.,
1998; Traynelis et al., 1998). Projection neurons contain
only NR2A and NR2B subunits, whereas interneurons also
contain NR2D subunits (Landwehrmeyer et al., 1995;
Standaert et al., 1996, 1999). Further studies of the
functional properties of these specific receptor subunit
combinations may help to elucidate the basis for selective
vulnerability of the different types of striatal neurons.
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